FINITE DIFFERENCE SOLUTION OF LAPLACE'S EQUATION

I. INTRODUCTION

The potentials relationship to the charge distribution can be expressed either in differential or integral form

$$\nabla^{2}V = -\rho/\varepsilon_{o}$$

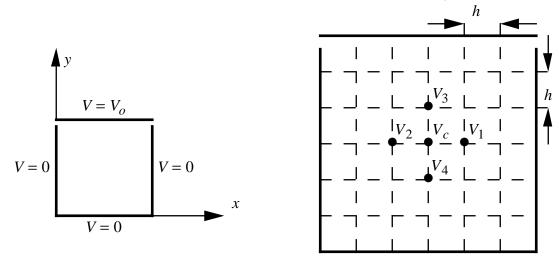
$$V = \frac{1}{4\pi\varepsilon_{o}} \iiint_{V} \frac{\rho}{|\vec{R} - \vec{R}'|} dv'$$

The differential form is usually solved by approximating the ∇ operator by finite differences. The integral equation is solved by approximating ρ by a series with unknown expansion coefficients, and then applying the boundary conditions to find the constants.

II. EXAMPLE: POTENTIAL IN A TROUGH

1. Finite Difference Formulation

Consider a two-dimensional problem such as an infinitely long trough with the cross section shown below. Three sides are grounded and the fourth is at a potential V_o .



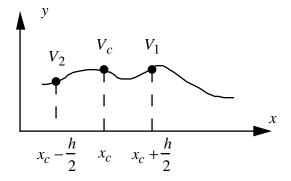
For a two-dimensional geometry Laplace's equation becomes

$$\nabla^2 V(x, y) = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) V(x, y)$$

To apply the finite difference approximation the source free region inside of the trough is divided into cells, in this case shown as square. Each node inside is the center of a five-point cross of

nodes with potentials V_c , V_1 , V_2 , V_3 , and V_4 , Using the central difference method the first and second derivatives are represented by the following finite differences:

$$\begin{aligned} \frac{dV}{dx}\Big|_{x_c} &\approx \frac{V_1 - V_2}{2h} \\ \frac{d^2V}{dx^2}\Big|_{x_c} &\approx \frac{\frac{dV}{dx}\Big|_{x_c + h/2} - \frac{dV}{dx}\Big|_{x_c - h/2}}{h} \\ &\approx \frac{\frac{V_1 - V_c}{h} - \frac{V_c - V_2}{h}}{h} \\ &\approx \frac{V_1 - 2V_c + V_2}{h^2} \end{aligned}$$



Similarly for the *y* component

$$\frac{d^2V}{dy^2} \approx \frac{V_3 - 2V_c + V_4}{h^2}$$

and Laplace's equation becomes

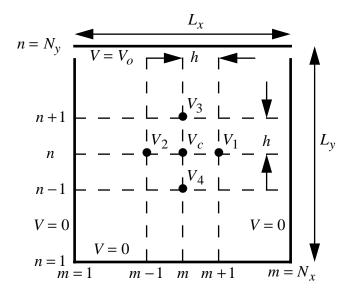
$$\nabla^2 V \approx \frac{V_1 + V_2 + V_3 + V_4 - 4V_c}{h^2} = 0$$

In order to find the potential everywhere inside of the trough, this equation must be applied at all of the interior nodes. For convenience the nodes are renumbered with index m along the x axis and y along the y axis. The number of cells is

$$N_x = \frac{L_x}{h} + 1 \qquad N_y = \frac{L_y}{h} + 1$$

and the total number of nodes inside of the trough is $N = (N_x - 2)(N_y - 2)$. The interior nodes run from m = 2 to $m = N_x$ along the x axis and from n = 2 to $n = N_y$ along the y axis. At node (m,n) Laplace's equation is

$$\frac{1}{h^2} [V(m+1,n) + V(m-1,n) + V(m,n+1) + V(m,n-1) - 4V(m,n)] = 0$$



2. Boundary Conditions

The boundary conditions are now imposed:

1.
$$V(m,n)=0$$
 if $m=1$ and $1 \le n \le N_y$ (left wall) $m=N_x$ and $1 \le n \le N_y$ (right wall) $n=1$ and $1 \le m \le N_x$ (bottom) 2. $V(m,n)=V_o$ if $n=N_y$ and $1 \le m \le N_x$ (top)

Next, number the nodes sequentially using a single index

$$V_k \equiv V(m,n)$$
 where $k = (m-1) + (N_x - 2)(n-2)$ for $1 \le k \le N$

There are N equations as follows:

#1:
$$k = 1(m = n = 2)$$
:
$$\frac{1}{h^2} \left[V(3,2) + \underbrace{V(1,2)}_{=0} + V(2,3) + \underbrace{V(2,1)}_{=0} - 4V(2,2) \right] = 0$$
#2: $k = 2(m = 3, n = 2)$:
$$\frac{1}{h^2} \left[V(4,2) + V(2,2) + V(3,3) + V(3,1) - 4V(3,2) \right] = 0$$

$$\vdots$$

$$#N: k = N(m = N_x - 1, n = N_y - 1):$$

$$\frac{1}{h^{2}} \left[\underbrace{V(N_{x}, N_{y} - 1)}_{=0} + V(N_{x} - 2, N_{y} - 1) + \underbrace{V(N_{x} - 1, N_{y})}_{V_{o}} + V(N_{x} - 1, N_{y} - 2) - 4V(N_{x} - 1, N_{y} - 1) \right] = 0$$

The equations are rewritten with the excitation terms V_o on the right-hand sides. For example, equation number N,

$$\frac{1}{h^2} \left[V(N_x - 2, N_y - 1) + V(N_x - 1, N_y - 2) - 4V(N_x - 1, N_y - 1) \right] = -V_o$$

3. Matrix Equation

The *N* equations can be cast into matrix form:

				$V_{N_x-2} $ $(N_x-1,2)$			•••	V_{N-1}	V_N
1	-4	1	0	 0	1	0		0	0
2	1	-4	1	 0	0	1		0	0
÷	÷	÷	:	 :	:	:		:	:
N	0	0	0	 0	0	0		1	-4

The entries in the table are defined as the matrix \mathbf{Q} . The boundary excitation vector is

$$\mathbf{E} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ -V_o \\ -V_o \\ \vdots \\ -V_o \end{pmatrix}$$

and the vector of unknown voltages

$$\mathbf{V} = \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{pmatrix}$$

so that $\mathbf{Q}\mathbf{V}=\mathbf{E}$. Solve for the potentials by inverting \mathbf{Q} and pre-multiplying

$$\mathbf{V} = \mathbf{Q}^{-1}\mathbf{E}$$

4. Sample Data

Result for a sample calculation follows: L_x = 1 m, L_y = 2 m, h = 0.0625 m, N_x = 20 , N_y = 40 , V_o = 100 V.

